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1. Introduction

While the equations of general relativity are time symmetric themselves, one often finds

solutions with an intrinsic arrow of time, due to the presence of spacelike singularities.

Familiar examples include FRW cosmologies and the formation of a black hole in a gravi-

tational collapse. In the case of a gravitational collapse to form a black hole, the direction

of time appears to be thermodynamic, since a black hole behaves like a thermodynamical

system [1 – 3]. It has also long been speculated that the thermodynamic arrow of time

observed in nature may be related to the big bang singularity [4].

In an anti-de Sitter (AdS) spacetime, a microscopic understanding of the emergence of

thermodynamic behavior in a gravitational collapse can be achieved using the AdS/CFT

correspondence [5 – 7], which states that quantum gravity in an asymptotic AdS5 × S5

spacetime is described by an N = 4 SU(N) super-Yang-Mills (SYM) theory on an S3.

The classical gravity limit of the AdS string theory corresponds to the large N and large

’t Hooft coupling limit of the Yang-Mills theory. A matter distribution of classical mass

M in AdS, can be identified1 with an excited state of energy E = µN2 in the SYM theory

with µ a constant independent of N . The gravitational collapse of the matter distribution

can be identified with the thermalization of the corresponding state in SYM theory, with

the resulting black hole2 identified with thermal equilibrium [8, 9]. In this context, it is

natural to suspect that the appearance of a spacelike singularity at the end point of a

collapse should be related to certain aspect of thermalization in the SYM theory.3

A crucial element in the above description is the large N limit. N = 4 SYM theory on

S3 is a closed, bounded quantum mechanical system with a discrete energy spectrum. At

any finite N , no matter how large, such a theory is quasi-periodic (i.e. has recurrences), time

reversible, and never really thermalizes. However, to match the picture of a gravitational

collapse in classical gravity, an arrow of time should emerge in the large N limit for the SYM

theory in a generic state of energy E = µN2 with a sufficiently large µ. This consistency

requirement immediately raises several questions:

1. What is the underlying physical mechanism for the emergence of an arrow of time in

Yang-Mills theory?

2. Is large ’t Hooft coupling needed?

3. Suppose an arrow of time also emerges at small ’t Hooft coupling, what would be

the bulk string theory interpretation of the SYM theory in such an excited state? A

stringy black hole? Does such a stringy black hole have a singularity?

4. Is there a large N phase transition as one decreases the ’t Hooft coupling from infinity

to zero?

1See appendix A for a brief review of parameter translations in AdS/CFT.
2Assume M is sufficiently big that a big black holes in AdS is formed, which also implies that µ should

be sufficiently big.
3Some interesting ideas regarding spacelike singularities and thermalization have also been discussed

recently in [10].
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It would be very desirable to have a clear physical understanding of the above questions,

which could shed light on how spacelike singularities appear in the classical limit of a

quantum gravity and thus lead to an understanding of their resolution in a quantum theory.

The emergence of an arrow of time is also closely related to the information loss

paradox.4 At finite N , the theory is unitary and there is no information loss. But in

the large N limit, an arrow of time emerges and the information is lost, since one cannot

recover the initial state from the final thermal equilibrium. Thus the information loss

in a gravitational collapse is clearly a consequence of the classical approximation (large

N limit), but not a property of the full quantum theory. While AdS/CFT in principle

resolves the information loss paradox, it remains a puzzle whether one can recover the

lost information using a semi-classical reasoning.5 From this perspective it would also be

valuable to understand the various questions listed in the last paragraph.

The purpose of the paper is to suggest a simple mechanism for the emergence of an

arrow of time in the large N limit and to initiate a statistical approach to understanding

the quantum dynamics of a YM theory in highly excited states. In particular, we argue

that the perturbative planar expansions break down for real-time correlation functions and

that there is a large N “phase transition” at zero ’t Hooft coupling.6 We also argue that

time irreversibility occurs for any nonzero value of the ’t Hooft coupling.

The plan of the paper is as follows. In section 2 we introduce the subject of our study:

a family of matrix quantum mechanical systems including N = 4 SYM on S3. We high-

light some relevant features of the energy spectrum of these theories. Motivated by the

classical mixing properties, we introduce observables which could signal time irreversibility.

The simplest of them are real-time correlation functions at finite temperature, which de-

scribe non-equilibrium linear responses of the systems. The rest of the paper is devoted to

studying these observables, first in perturbation theory, and then using a non-perturbative

statistical method. In sec 3 we compute real-time correlation functions in perturbation

theory. We find that at any finite order in perturbation theory, the arrow of time does

not emerge. In sec 4 we argue that the planar perturbative expansion has a zero radius of

convergence and cannot be used to understand the long time behavior of the system. In

section 5 we give a simple physical explanation for the breakdown of perturbation theory.

We argue that for any nonzero ’t Hooft coupling, an exponentially large (in N2) number

of free theory states of wide energy range (or order N) mix under the interaction. As a

consequence small λ and long time limits do not commute at infinite N . In section 6 we

develop a statistical approach to studying the dynamics of the theories in highly excited

states, which indicates that time irreversibility occur for any nonzero ’t Hooft coupling λ.

We conclude in section 7 with a discussion of implications of our results.

2. Prelude: theories and observables of interest

In this section we introduce the systems and observables we want to study.

4To our knowledge this connection was first pointed out in the context of AdS/CFT in [9].
5See e.g. [9, 11 – 17] for recent discussions.
6See [18, 19] for some earlier discussion of a possible large N phase transition in λ.

– 3 –



J
H
E
P
1
2
(
2
0
0
7
)
0
2
7

2.1 Matrix mechanical systems

We consider generic matrix quantum mechanical systems of the form

S = Ntr

∫
dt

[∑

α

(
1

2
(DtMα)2 − 1

2
ω2

αM2
α

)]
−

∫
dt V (Mα;λ) (2.1)

which satisfy the following requirements:

1. Mα are N × N matrices and DtMα = ∂t − i[A,Mα] is a covariant derivative. One

can also include fermionic matrices, but they will not play an important role in this

paper and for simplicity of notations we suppress them.

2. The frequencies ωα in (2.1) are nonzero for any α, i.e. the theory has a mass gap and

a unique vacuum.

3. The number of matrices is greater than one and can be infinite. When there is an infi-

nite number of matrices, we require the theory to be obtainable from a renormalizable

field theory on a compact space.

4. V (Mα;λ) can be written as a sum of single-trace operators and is controlled by a

coupling constant λ, which remains fixed in the large N limit.

N = 4 SYM on S3 is an example of such systems with an infinite number of matrices

(including fermions) when the Yang-Mills and matter fields are expanded in terms of spher-

ical harmonics on S3 (see e.g. [20, 21]). In this case, ωα are integer or half-integer multiples

of a fundamental frequency ω0 = 1/R with R the radius of the S3. The number of modes

with frequencies ωα = k
R increases with k as a power. V (Mα;λ) can be schematically

written as7

V = N
(√

λV3(Mα) + λV4(Mα)
)

(2.2)

where V3 and V4 contain infinite sums of single-trace operators which are cubic and quartic

in Mα and ∂tMα. λ = g2
YMN is the ’t Hooft coupling.

In this paper we work in the large N limit throughout. Our discussion will only depend

on the large N scaling of various physical quantities and not on the specific structure of the

theories in (2.1) like the precise field contents and exact forms of interactions. For purpose

of illustration, we will often use as a specific example the following simple system

S =
N

2
tr

∫
dt

[
(DtM1)

2 + (DtM2)
2 − ω2

0(M
2
1 + M2

2 ) − λM1M2M1M2

]
. (2.3)

7The precise form of the interactions depends on the choice of gauge. It is convenient to choose Coulomb

gauge ∇ · ~A = 0, in which the longitudinal component of the gauge field is set to zero. In this gauge, Mα

include also non-propagating modes coming from harmonic modes of ghosts and the zero component of the

gauge field.
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2.2 Energy spectrum

(2.1) has a U(N) gauge symmetry and physical states are singlets of U(N). One can classify

energy eigenstates of a theory by how their energies scale with N in the large N limit. We

will call the sector of states whose energies (as measured from the vacuum) are of order

O(1) the low energy sector. As motivated in the introduction, we are mainly interested in

the sector of states whose energies are of order µN2 with µ independent of N , which will

be called the high energy sector. The density of states in the low energy sector is of order

O(1), i.e. independent of N , while that of the high energy sector can be written in a form

Ω(E) ∼ es(µ)N2
, E = µN2 (2.4)

with s(µ) some function independent of N . (2.4) follows from the fact that the number of

ways to construct a state of energy of order O(N2) from O(N2) oscillators of frequency of

O(1) is an exponential in N2. The presence of interaction should not change this behavior

at least for µ sufficiently large. (2.4) is the reason why we restrict to more than one matrix

in (2.1). For a gauged matrix quantum mechanics with a single matrix one can reduce

the matrix to its eigenvalues and (2.4) does not apply. When µ is sufficiently large, s(µ)

should be a monotonically increasing function8 of µ and we will restrict our definition of

high energy sector to such energies.

For N = 4 SYM, states in the low energy sector correspond to fundamental string

states in the AdS spacetime, while the states in the high energy sectors may be considered

as black hole microstates.9

A convenient way to study a system in excited states is to put it in a canonical ensemble

with a temperature T = 1
β . The partition function and free energy are defined by (Tr

denotes sum over all physical states and H is the Hamiltonian)

Z = Tr e−βH = e−βF . (2.5)

We will always keep T fixed in the large N limit. Below low and high temperature

refers to how the temperature is compared with the mass gap of a theory.10 As one

varies T , different parts of the energy spectrum are probed. For the family of matrix

quantum mechanical systems (2.1), there are two distinct temperature regimes. At low

temperature, one probes the low energy sector and the free energy F is of order O(1).

At high temperature F is of order O(N2) and the high energy sector is probed. It may

seem surprising at first sight that one can probe the sector of energies of O(N2) using a

temperature of O(1). This is due to the large entropy factor (2.4) which compensates the

Boltzmann suppression. For N = 4 SYM theory at strong coupling, there is a first order

phase transition separating the two regimes at a temperature of order 1/R, where R is the

AdS radius [22, 6, 8]. A first order phase transition has also been found for various theories

in the family of (2.1) at weak coupling [23, 24, 21].

8That is, the theory should have a positive specific heat for µ sufficiently large.
9Note that at a sufficiently high energy, the most entropic object in AdS is a big black hole.

10For example for N = 4 SYM on S3, low (high) temperature means T ≪ 1
R

(T ≫ 1
R

)
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An important feature of the high energy sector is that the large N limit is like a

thermodynamic limit with N2 playing the analogous role of the volume factor. In this

limit the number of degrees of freedom goes to infinity while the average excitations per

degree of freedom remain finite. The thermal partition function

Z(β) = Tr e−βH =

∫
dE Ω(E)e−βE (2.6)

is sharply peaked at an energy Eβ ∼ O(N2) (with a width of order O(N)) determined by

∂S(E)

∂E

∣∣∣∣
Eβ

= β, S(E) = log Ω(E) (2.7)

Note that the leading N dependence of S(E) has the form S(E) = N2s(µ) (see (2.4))

with µ = E/N2 characterizing the average excitations per oscillator degree of freedom.

Equation (2.7) can also be interpreted as the equivalence between canonical and micro-

canonical ensemble.11 Note that since F ∼ O(N2), the high temperature phase can be

considered a “deconfined” phase [25, 8].

2.3 Observables

In a classical Hamiltonian system, time irreversibility is closely related with the mixing

property of the system, which can be stated as follows. Consider time correlation functions

CAB(t) =
〈
A(ΦtX)B(X)

〉
− 〈A〉 〈B〉 (2.8)

where A,B are functions on the classical phase space parameterized by X. ΦtX describes

the Hamiltonian flow, where Φt is a one-parameter group of volume-preserving transfor-

mations of the phase space onto itself. 〈. . .〉 in (2.8) denotes phase space average over a

constant energy surface. The system is mixing12 iff [26]

CAB(t) → 0, t → ∞ (2.9)

for any smooth L2 functions A and B.

The closest analogue of (2.8) for the matrix quantum mechanical systems we are con-

sidering would be

Gi(t) = 〈i|O(t)O(0)|i〉 − 〈i|O(0)|i〉2 (2.10)

where |i〉 is a generic energy eigenstate in the high energy sector, and O is an arbitrary

gauge invariant operator which when acting on the vacuum creates a state of finite energy

of order O(1). More explicitly, denoting |ψO〉 = O(0) |Ω〉 with |Ω〉 the vacuum, we require

11In contrast in the low energy sector, since both the free energy and the density of states are indepen-

dent of N , in generic models there is no large parameter that one can use to perform the saddle point

approximation to equate two ensembles.
12Note that mixing is a stronger property than ergodic which involves long time average. The ergodic

and mixing properties can also be characterized in terms of the spectrum of the Koopman operator. For

example, a system is mixing iff the eigenvalue 1 is simply degenerate and is the only proper eigenvalue of

the Koopman operator [26].
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〈ψO|H|ψO〉 ∼ O(1). Note that for N = 4 SYM on S3, a local operator O(t, ~x) of dimension

O(1) on S3 is not allowed by this criterion since O(t, ~x) creates a state of infinite energy. To

construct a state of finite energy one can smear the local operator over a spatial volume,

e.g. by considering operators with definite angular momentum on S3. Without loss of

generality, we can take O to be of the form

O = tr(Mα1 · · ·Mαn1
)tr(Mβ1 · · ·Mβn2

) · · · tr(Mγ1 · · ·Mγnk
) (2.11)

with the total number of matrices K =
∑k

i=1 nk independent of N . We will call such

operators small operators. The reason for restricting to small operators is that they have

a well defined large N limit in the sense defined in [27]. More explicitly, if one treats

the large N limit of a matrix quantum mechanics as a classical system, then (2.11) with

K ∼ O(1) are smooth functions on the corresponding classical pase space. From AdS point

of view, such operators correspond to fundamental string probes which do not deform the

background geometry. If for all small operators O and generic states |i〉 in the high energy

sector

Gi(t) → 0, t → ∞ (2.12)

one can say the system develops an arrow of time. In particular, (2.12) implies that one

cannot distinguish different initial states from their long time behavior (i.e. information is

lost).

Energy eigenstates are hard to work with. It is convenient to consider microcanonical or

canonical averages of (2.10), for example, the thermal connected Wightman functions (see

appendix B.1 for a precise definition of “connected” and the constant C below)

G+(t) = 〈O(t)O(0)〉β =
1

Z
Tr

(
e−βHO(t)O(0)

)
− C (2.13)

or retarded functions

GR(t) =
1

Z
Tr

(
e−βH [O(t),O(0)]

)
. (2.14)

We shall take the temperature T to be sufficiently high so that Eβ determined

from (2.7) lies the high energy sector. Equation (2.12) implies that13

GR(t) → 0, G+(t) → 0, t → +∞ . (2.15)

Note that GR(t) measures the linear response of the system to external perturba-

tions caused by O. That GR(t) → 0 for t → ∞ implies that any small perturbation of

the system away from the thermal equilibrium eventually dies away. In a weaker sense

than (2.12), (2.15) can also be considered as an indication of the emergence of an arrow of

time.

In frequency space, the Fourier transform14 of (2.13) and (2.14) can be written in terms

of a spectral density function ρ(ω) (see appendix B.1 for a review)

G+(ω) =
1

1 − e−βω
ρ(ω)

13(2.12) in fact implies the following to be true for any ensemble of states.
14We use the same letter to denote the Fourier transform of a function, distinguishing them by the

argument of the function.
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GR(ω) = −
∫ ∞

−∞

dω′

2π

ρ(ω′)

ω − ω′ + iǫ
(2.16)

(2.15) may be characterized by properties of the spectral density ρ(ω). For example from

the Riemann-Lebesgue theorem, (2.15) should hold if ρ(ω) is an integrable function on the

real axis. Since other real-time correlation functions can be obtained from G+ (or spectral

density function ρ(ω)) from standard relations, for the rest of the paper, we will focus on

G+ only.

For N = 4 SYM at strong coupling, it is convenient to take O to have a definite

angular momentum l on S3. (2.13) and (2.14) can be studied by considering a bulk field

propagating in an eternal AdS black hole geometry and one does find the behavior (2.15)

as first emphasized in [9]. In the bulk language, (2.15) can be heuristically interpreted

as the fact that any small perturbation of the black hole geometry eventually dies away

by falling into the horizon. Furthermore, by going to frequency space, one finds that the

Fourier transform G+(ω, l) has a rich analytic structure in the complex ω-plane,15 which

encodes that the bulk black hole geometry contains a horizon and singularities. The main

features can be summarized as follows [28]:

1. G+(ω, l) has a continuous spectrum with ω ∈ (−∞,+∞). This is due to the presence

of the horizon in the bulk.

2. In the complex ω-plane, the only singularities of G+(ω, l) are poles. The decay rate

for G+(t) at large t is controlled by the imaginary part of the poles closest to the real

axis, which is of order β.

3. The presence of black hole singularities in the bulk geometry is encoded in the be-

havior of G+(ω, l) at the imaginary infinity of the ω-plane.16 In particular,

3a. G+(ω, l) decays exponentially as ω → ±i∞.

3b. Derivatives of G+(ω, l) over l evaluated at l = 0 are divergent as ω → ±i∞.

As emphasized in [28], none of the above features survives at finite N , in which case17

G+(ω) = 2π
∑

m,n

e−βEmρmnδ(ω − En + Em)

has a discrete spectrum and is a sum of delta functions supported on the real axis. This

indicates that concepts like horizon and singularities only have an approximate meaning

in a semi-classical limit (large N limit).

15Similar things can also said about GR(ω, l) which can be obtained from G+(ω, l) using standard rela-

tions.
16See also [29] for signature of the black hole singularities in coordinate space.
17Note that even though N = 4 SYM on S3 is a field theory, at finite N the theory can be effectively

considered as a theory with a finite number of degrees of freedom, since for any given energy E, there

are only a finite number of modes below that energy. Furthermore, given that the number of modes with

frequency k
R

grows with k only as a power, it is more entropically favorable to excite modes with low k for

E ∼ O(N2) and modes with ωα ∼ O(N) are almost never excited.
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To understand the information loss paradox and the resolution of black hole singular-

ities, we need to understand how and why they arise in the classical limit of a quantum

gravity. In Yang-Mills theory, this boils down to understanding what physics is missed in

the large N limit and why missing it is responsible for the appearance of singularities and

the loss of information. With these motivations in mind, in this paper we are interested in

understanding the following questions

1. Can one find a qualitative argument for the emergence of an arrow of time in the

large N limit?

2. Does the analytic behavior observed at strong coupling persist to weak coupling?

which we turn to in the following sections.

3. Non-thermalization in perturbation theory

In this section we consider (2.13) in perturbation theory in the planar limit. We will

find that real-time correlation functions have a discrete spectrum and oscillatory behavior.

Thus the theory does not thermalize in the large N limit.

In perturbation theory, G+(t) can be computed using two methods. In the first method,

one computes GE(τ) with 0 < τ < β in Euclidean space using standard Feynman diagram

techniques. G+(t) can then be obtained by taking τ = it + ǫ. An alternative way is to

double the fields and use the analogue of the Schwinger-Keldysh contour to compute the

Feynman function GF (ω) in frequency space [30], from which G+(ω) can be obtained. In

the Euclidean-time method it is more convenient to do the computation in coordinate space

since one does not have to sum over discrete frequencies, while in the real-time method

frequency space is more convenient to use.

We look at the free theory first.

3.1 Free theory

To evaluate (2.13) in free theory, it is convenient to use the Euclidean method. The

Euclidean correlator

G
(0)
E (τ) = 〈O(τ)O(0)〉0,β , 0 ≤ τ < β (3.1)

with O of the form (2.11) can be computed using the Wick contraction18

Mα1
ij (τ)Mα2

kl (0)
︸ ︷︷ ︸

=
δα1α2

N

∞∑

m=−∞

g
(0)
E (τ − mβ;ωα1)U

−m
il Um

kj (3.2)

where g
(0)
E is the propagator at zero temperature

g
(0)
E (τ ;ω) =

1

2ω
e−ω|τ | . (3.3)

18see e.g. [31] for a derivation of the following equation and some examples of correlation functions in

free theory.
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In (3.2) U is a unitary matrix which arises due to covariant derivatives in (2.1) and

can be understood as the Wilson line of A wound around the τ direction. In the evaluation

of free theory correlation functions 〈· · ·〉0,β in (3.1), one first preforms the Wick contrac-

tions (3.2) and then performs the unitary matrix integral over U , which plays the role of

projecting the intermediate states to the singlet sector. In the large N limit, the U integral

can be evaluated by a saddle point approximation. Note in particular that [24]

U → 1, T → ∞ (3.4)

Equation (3.4) indicates that the singlet condition should not play an important role

for states of sufficiently high energy.

For definiteness, we now restrict to theories with a single fundamental frequency ω0

like N = 4 SYM or (2.3). Relaxing this restriction does not affect our main conclusions,

as will be commented on in various places below. Wick contractions in (3.1) give rise to

terms of the form enω0τ for some integer n, while the U -integral computes the coefficients

of these terms. Thus (3.1) always has the form

G
(0)
E (τ) =

∆∑

n=−∆

cn(β)enω0τ (3.5)

where ∆ is the dimension of the operator.19 Analytically continuing (3.5) to real time, we

find that

G
(0)
+ (t) =

∆∑

n=−∆

cn(β)e−inω0t (3.6)

and

G
(0)
+ (ω) = 2π

∆∑

n=−∆

cn(β)δ(ω − nω0) . (3.7)

Thus in the large N limit, the correlation function always shows a discrete spectrum is

quasi-periodic. The results are generic. If the theory under consideration has several incom-

mensurate fundamental frequencies, one simply includes a sum like those (3.5) and (3.7)

for each such frequency. The maximal number of independent exponentials is 2K , where

K is the total number of matrices in O. This is due to that each matrix in O can only

connect states with a definite energy difference.

It is also instructive to obtain (3.6) using a different method. By inserting a complete

set of free theory energy eigenstates in (2.13) we find that

G
(0)
+ (t) =

1

Z0

∑

a,b

e−βǫaρabe
i(ǫa−ǫb)t (3.8)

where |a〉 is a free theory state with energy ǫa and ρab = | 〈a|O(0)|b〉 |2. To understand the

structure of (3.8) we expand O(0) in terms of creation and annihilation operators associated

with each (Mα)ij , from which we find that

19Note that for N = 4 SYM the dimension of Mα is given by ωα

ω0

. For other matrix quantum mechanical

systems without conformal symmetry one can use a similar definition in free theory. For bosonic operators,

∆ are integers.
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A. Due to energy conservation, O can connect levels whose energy differences lie between

−∆ω0 and ∆ω0, i.e. ρab can only be non-vanishing for |ǫa − ǫb| < ∆ω0.

B. O can only connect states whose energy differences are integer multiples of ω0 i.e. ρab

can only be non-vanishing for ǫa − ǫb = nω0 with |n| < ∆ integers (or half integers

if O is fermionic). Similarly, in the cases where O contains K types of matrices of

different frequency ωi it can only connect states whose energy differs by
∑K

i=1 niωi,

where ni are integers whose absolute values are bounded by the number of matrices

of each type appearing in O.

As a result, (3.8) must have the form (3.6). Note that the argument based on (3.8) applies

not only to the thermal ensemble, but in fact to correlation functions in any density matrix

(or pure state).

To summarize, one finds that in free theory a real-time thermal two-point function

always has a discrete spectrum and is quasi-periodic in the large N limit. This implies

that once one perturbs the theory away from thermal equilibrium, the system never falls

back and keeps oscillating. This is not surprising since the system is free and there is

no interaction to thermalize any disturbance. Note that this is distinctly different from

the behavior (2.15) found at strong coupling. In particular, this implies that the bulk

description of the high temperature phase in free theory looks nothing like a black hole. Also

note that the story here is very different from that of the orbifold CFT in the AdS3/CFT2

correspondence. There the mass gap in free theory goes to zero in the large N limit in the

long string sector [32]. As a result, one finds that free theory correlation functions in the

long string sector do resemble those from a BTZ black hole [9, 33].

3.2 Perturbation theory

In this subsection we use a simple example (2.3) for illustration. The general features

discussed below apply to generic theories in (2.1) including N = 4 SYM.

In perturbation theory GE(τ) can be expanded in terms of λ as

GE(τ) =

∞∑

n=0

λnG
(n)
E (τ) (3.9)

where G
(0)
E is the free theory result. We will be only interested in the connected part of

GE(τ). Higher order corrections are obtained by expanding e−λ
R

dτV in the path integral

with V given by the quartic term in (2.3). More explicitly, a typical contribution to G
(n)
E (τ)

in (3.9) has the form

(−1)n

n!

∫ β

0
dτ1 · · ·

∫ β

0
dτn 〈O(τ)O(0)V (τ1) · · ·V (τn)〉β,0 (3.10)

The free theory correlation function inside the integrals in (3.10) can be computed by

first using Wick contraction (3.2) and then doing the U integral. The general structure

of (3.10) can be summarized as follows:
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1. The planar diagram contribution to G
(n)
E (τ) scales like N0, while diagrams of other

topologies give higher order 1/N2 corrections. The number Rn of planar diagrams

grows like a power in n, i.e. is bounded by Cn with C some finite constant [34].

2. The τ -integrations are over a compact segment and are all well defined. A typical

term in (3.10) after the integration has the structure

g
(n)
kj (β)τ lekω0τ (3.11)

where l and k are integers. l can take values from 0 to n, while k from −2n − ∆ to

2n + ∆ where ∆ is the dimension of O in free theory.

Analytically continuing (3.9) to Lorentzian time by taking τ = it + ǫ, we find

G+(t, λ) =
∞∑

n=0

λnG
(n)
+ (t) (3.12)

where typical terms in G
(n)
+ (t) have the t-dependence of the form

g
(n)
kl (β)tleikω0t (3.13)

with the range of l and k given after equation (3.11). After Fourier transforming to fre-

quency space we find that at each order in the perturbative expansion G
(n)
+ (ω) (and thus

the spectral density function ρ(ω)) consists of sums of terms of the form

g
(n)
kl δ(l)(ω − kω0) (3.14)

where the superscript l denotes the number of derivatives.

If the theory has more than one fundamental frequencies, since the interaction vertices

are traces of a finite number of matrices they only connect states with definite energy

differences. More and more frequencies will appear in the spectrum of a correlation function

as we go to higher and higher orders in the perturbative expansion. The increase in the

number of frequencies is exponential in the order of the expansion but at any fixed finite

order no matter how large the spectrum of the correlation functions is discrete.

One origin of tl terms in (3.13) is the shifting of frequency from the free theory value.

For example, suppose the free theory frequency is shifted to ω = ω0 + λω1 + · · ·, one would

get terms of the form (3.13) when expanding the exponential eiωt in λ. One can in principle

improve the perturbation theory by resumming such contributions using Dyson’s equations.

However, there appears no systematic way of doing this for a composite operator (3.4). In

appendix B.2, we prove that real-time correlation functions of fundamental modes Mα

again have a discrete spectrum in the improved perturbative expansion.

4. Break down of planar perturbation theory

It is well known that at zero temperature the planar expansion of a matrix quantum

mechanics has a finite radius of convergence in the λ-plane (see e.g. [34] for a recent
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discussion and earlier references). If this persists at finite temperature, properties of the

theory at zero coupling or in perturbation theory should hold at least for the coupling

constant being sufficiently small. In particular, from our discussion of last section, one

would conclude that real-time correlation functions for generic gauge invariant operators

should be quasi-periodic and an arrow of time does not emerge at small ’t Hooft coupling.

In this section, we argue that the planar perturbative expansion in fact breaks down for

real-time correlation functions and thus perturbation theory cannot be used to understand

the long-time behavior of the system at any nonzero coupling.

From our discussion in section 3.2, we expect the Euclidean correlation function (3.9)

should have a finite radius of convergence for any given τ ∈ (0, β). After analytic continu-

ation to real time, the convergence of the expansion in Euclidean time implies that (3.12)

should have a finite radius λc(t) of convergence for any given t. However, it does not tell

how λc(t) changes with t in the limit t → ∞. In this section we argue that the radius of

convergence goes to zero in the large t limit. Note that the convergence of the perturbative

expansion depends crucially on how g
(n)
kl in (3.14) fall off with n. We will argue below that

the falloff is slow enough that perturbation theory breaks down in the long time limit. In

frequency space, one finds that n-th order term in the expansion grows like n!.20

We will again use (2.3) as an illustration. The argument generalizes immediately to

generic systems in (2.1). For simplicity, we will consider the high temperature limit (3.4)

in which we can replace U in (3.2) by the identity matrix, e.g.

M1ij(τ)M1kl(0)︸ ︷︷ ︸ =
1

N

∞∑

m=−∞

g
(0)
E (τ − mβ;ω0)δilδkj =

1

N
δilδkj gE(τ ;ω) (4.1)

where

gE(τ ;ω) =
1

2ω

(
e−ωτ (1 + f(ω)) + eωτf(ω)

)
, τ ∈ (0, β) (4.2)

with

f(ω) =
1

eβω − 1
. (4.3)

Note that outside the range in (4.2), gE(τ) is periodic.

For our purpose it is enough to examine the Wightman function for M1,

D+(t) =
1

Z(β)
Tr

(
e−βHM1(t)M1(0)

)
. (4.4)

An exactly parallel argument to that of the last section leads to the expansion

D+(t, λ) =

∞∑

n=0

λnD
(n)
+ (t) (4.5)

where typical terms in D
(n)
+ (t) have the t-dependence of the form

d
(n)
kl (β)tleikω0t (4.6)

20Note that in frequency space the relation between real-time and Euclidean correlation functions is not

simple, since Euclidean correlation functions are only defined at discrete imaginary frequencies.
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=

n

Γ2Γ1

n−1Γ

n−1Γ

n−1Γ=

=

Γ

Figure 1: A family of diagrams which indicates that the perturbation theory break down in the

long time limit. Black and red lines denote propagators of M1 and M2 respectively.

The convergence of series depends on how d
(n)
kl fall off with n. For our purpose it

is enough to concentrate on the term with the highest power t in each order, i.e. the

coefficients of tn with given k. More explicitly, we will look at a term of the form

D+(t, λ) = D
(0)
+ (t)

∞∑

n=0

cnλntn + · · · (4.7)

where D
(0)
+ is the free theory expression.

As before we will first compute (4.7) in Euclidean time and then perform an analytic

continuation. Calculating

cn explicitly at each loop order for all n is of course impractical. Our strategy is as

follows. We will identify a family (in fact infinite families as we will see below) of planar

Feynman diagrams of increasing loop order and show that their contribution to cn falls

off like a power in n. Barring any unforseen magical cancellation,21 this would imply that

the perturbation series (3.12) has a zero radius of convergence in the t → ∞ limit. The

simplest set of diagrams which meet our purpose are given by figure 1.

These graphs appear at orders d1 = 2, d2 = 8, d3 = 26, · · · of perturbation theory where

di = 3di−1 + 2 = 3i − 1, i = 1, 2 · · · . (4.8)

We denote the contribution of each diagram by Γi(τ). For our purpose, it is not

necessary to compute the full graph. We will only need to calculate the term in each graph

with the highest power of τ , i.e. the term proportional to τdi . Also note that in each

diagram, the symmetry factor is exactly 1. Let us start with Γ1, which is given by

Γ1(τ − τ ′) = λ2

∫ β

0
dτ1dτ2 gE(τ − τ1;ω0)g

3
E(τ1 − τ2;ω0)gE(τ2 − τ ′;ω0) (4.9)

Note the identity

g3
E(τ ;ω0) =

3

(2ω0)2
f2(ω0)

(
eβω0gE(τ ;ω0) +

f(ω0)

f(3ω0)
gE(τ ; 3ω0)

)
(4.10)

21Note that since we are in the high temperature phase, in which supersymmetry is badly broken, there

is no obvious reason for suspecting such magical cancelations.
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Now plug (4.10) into (4.9). It is easy to convince oneself that the term proportional to

gE(τ ; 3ω0) in (4.10) will not generate a term proportional to τ2 and we will ignore it. The

contribution of the term proportional to gE(τ ;ω0) can be found by noting the identity22

∫ β

0
dτ1dτ2 gE(τ − τ1;ω0)gE(τ1 − τ2;ω0)gE(τ2 − τ ′;ω0) =

1

2

∂2

(∂ω2
0)

2
gE(τ − τ ′;ω0) (4.11)

The right hand side of (4.11) contains a piece 1
2

(τ−τ ′)2

(2ω0)2
gE(τ−τ ′) plus parts with smaller

powers of τ − τ ′. Thus the term in (4.9) proportional to (τ − τ ′)2 is given by

Γ1(τ − τ ′) =
αλ2

2
(τ − τ ′)2gE(τ − τ ′) + · · · (4.12)

where

α =
3f(1 + f)

(2ω0)4
, f = f(ω0) (4.13)

The term proportional to τdi for higher order diagrams Γi(τ) can now be obtained by

iterating the above procedure. A useful identity is

∫ β

0
dτ1dτ2 gE(τ − τ1;ω0)gE(τ1 − τ2;ω0) (τ1 − τ2)

n gE(τ2 − τ ′;ω0) (4.14)

=
(τ − τ ′)n+2

(2ω0)2
1

(n + 2)(n + 1)
gE(τ − τ ′;ω0) + · · ·

where we kept only the term with the highest power of τ − τ ′, as lower power terms will

not contribute to the terms in which we are interested. We find that the term proportional

to τdi in Γi(τ) is given by

Γi(τ) = Fiλ
diτdigE(τ ;ω0) + · · · (4.15)

where Fi satisfy the recursive relation

Fi+1 = F 3
i

α

di+1(di+1 − 1)
. (4.16)

Thus Fi can be written as

Fi = α
di
2 Λi (4.17)

with

Λi =
i−1∏

k=0

(
1

di−k(di−k − 1)

)3k

(4.18)

Λi in the large i limit can be easily estimated and we find

Λi ≈ e−
3
2
di , i ≫ 1 .

22If two matrices have different frequencies in the product gE(τ ;ω0)g
2
E(τ ; ω1) there is also a term propor-

tional to gE(τ ;ω0) with coefficient 1
(2ω1)2

f(ω1)(1 + f(ω1)) and the rest of the analysis follows with minor

changes.
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Summing all our diagrams together and analytically continuing to Lorentzian time with

τ = it + ǫ, we find that23

∑

i

Γi(t) ≈ D
(0)
+ (t)

∞∑

i=1

(−1)i
(

λt

hc

)di

+ · · · (4.19)

with hc given by

hc =
e

3
2√
α

=
e

3
2 (2ω0)

2

√
3f(1 + f)

(4.20)

Equation (4.19) implies that the radius of convergence in λ is given by

λc(t) ∼
1

t
(4.21)

which goes to zero as t → ∞.

It is also instructive to repeat the computation of figure 1 in frequency space using

the real-time method. The calculation is straightforward and we will only summarize the

result. One finds that the contribution of Γi to the Feynman function DF (ω) grows like di!.

Thus one expects that the perturbative expansion in frequency space is not well defined

for any frequency. Note that the non-analyticity in frequency space can be expected since

in going to frequency space one has to integrate the full real time-axis and the Fourier

transform is sensitive to the long time behavior. Also note that the n! factorial behavior

in perturbation theory often implies an essential singularity at λ = 0 (see also below).

We conclude this section with some remarks:

1. In the zero-temperature limit hc → ∞ and the set of terms in (4.19) all go to zero.

2. To simplify our discussion, we have only considered diagrams in figure 1. There are

in fact many other diagrams of similar type contributing at other orders in λ. For

example, by including those in figure 2, one can get contributions for all even orders in

λ rather than only (4.8). The qualitative conclusion we reached above is not affected

by including them.24

3. By taking in consideration the diagrams on the left of figure 2 the sum in (4.19)

is extended 25 to all even powers of λt and is oscillating therefore the singularities

in λt should lie on the imaginary axis. Let us suppose that for a given λ, D+(t)

has a singularity in t at qc/λ with qc lying in the upper half plane.26 Now Fourier

transforming D+(t) we find that

D+(ω) =

∫ ∞

−∞
dt eiωt D+(t) (4.22)

23Since we are only interested in the asymptotic behavior of the sum for large i we have replaced Fi by

its asymptotic value.
24There are also potentially an infinite number of other sets of diagrams which can lead to the behav-

ior (4.21), e.g. one can replace Γ1 by any diagram whose highest power in t is the same as the order of

perturbation and then iterates.
25the value of hc also changes
26Note that q∗c /λ must also be a singularity of D+(t).
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i

k

Γj

Γi

Γ
k

Γj

Γ

Γ

Figure 2: By including the diagrams on the left with all possible i, j, k ≥ 0 we can get contribution

at every even order of λ instead of (4.8). Γ0 denotes a single propagator. Diagrams on the right

can also contribute to the odd orders if (2.3) contains additional interactions of the form trA2B2.

The presence of qc/λ and q∗c/λ implies D+(ω) contains a term of the form for ω > 0

D+(ω) ∼ eiω qc
λ (4.23)

Thus D+(ω) contains an essential singularity at λ = 0.

4. The n! behavior in perturbative expansion in frequency space (say in the computa-

tion of DF (ω)) arises from a single class of Feynman diagrams. This is reminiscent

of renormalons in field theories [35 – 37]. In particular, when Borel resumming the

divergent series, depending on whether ω is greater or smaller than ω0, the singu-

larities on the Borel plane can appear on the positive or negative real axis,27 also

reminiscent of the IR and UV renormalons.

5. Note that in the limit T → ∞, hc in (4.20) scales with T as hc ∼ ω3
0

T , i.e.

λc(t) ∼
ω3

0

tT
(4.24)

For fixed λ, we expect a singularity for D+(t) at

t ∼ ω3
0

λT
(4.25)

Note that the right hand side of (4.25) is reminiscent of the magnetic mass scale for a

Yang-Mills theory (see e.g. [38]). However, in our matrix quantum mechanics, there

is no infrared divergence and it is not clear whether there is a connection.

6. The discussion can be straightforwardly applied to a generic theory in (2.1) with

cubic and quartic couplings. In fact the argument also applies to a single anharmonic

oscillator at finite temperature, even though in that case one does not expect the

perturbative expansion to converge anyway.28 Similarly, the argument also applies

to a single-matrix quantum mechanics if one does not impose the singlet condition.

When imposing the singlet condition, the matrix U in equation (3.2) cannot be set to

27Since we only have contributions to even order in λ, we cannot make a conclusion from our discussion

so far.
28See appendix D for further elaborations on the example of a single anharmonic oscillator and a discussion

on the differences between the single anharmonic oscillator and the matrix systems under consideration.
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1 and our argument does not apply. Similarly our argument does not apply to (2.1)

in the low energy sector, in which U is always important. Indeed using the results

of [31, 39], one can show that to leading order in the large N limit, correlation

functions at finite temperature can be written in terms of those at zero temperature

and we do expect that the perturbation theory has a finite radius of convergence.

7. Our argument indicates that perturbation theory breaks down in the long time limit

for a generic theory in (2.1). However, for any specific theory (say N = 4 SYM theory)

we cannot rule out magical cancelations which could in principle make the coefficients

of n-th order term much smaller than indicated by the diagrams we find. If magical

cancelations do occur in some theory, that would also be extremely interesting since

it indicates some hitherto unknown hidden structure.29

5. Physical explanation for the breakdown of planar expansion

In this section we give an alternative argument for the breakdown of perturbation theory in

the long time limit, which complements that of last section. The discussion below should

apply to a generic theory in (2.1). For definiteness we use N = 4 SYM as an illustration

example.

We first set up some notations. We write the full Hamiltonian as

H = H0 + V (λ) (5.1)

with H0 the Hamiltonian of the free theory and V the interaction. We denote a free theory

energy eigenstate by |a〉 with energy ǫa. |0〉 is the (unique) free theory vacuum. The

energy eigenstates of the interacting theory H are denoted by |i〉 with energy Ei. |Ω〉 is

the interacting theory vacuum. We can expand

|i〉 =
∑

a

cia |a〉 (5.2)

with cia satisfying ∑

a

|cia|2 =
∑

i

|cia|2 = 1 . (5.3)

We first recall some relevant features of the free theory energy spectrum of N = 4

SYM on S3. Since ωα in (2.1) are all integer or half-integer multiples of ω0 = 1
R , the free

theory energy spectrum is quantized in units 1
2ω0. Typical energy levels are degenerate.

The degeneracy is of O(1) in the low energy sector and of order eO(N2) in the high energy

sector. The exponentially large degeneracy in the high energy sector can be seen as follows.

From (2.7) the density of states Ω0(ǫ) in the high energy sector is of order eO(N2). Since the

energy levels are equally spaced with spacings order O(1), it must be that typical energy

levels have a degeneracy of order eO(N2). Alternatively, the number of ways to construct

29Since we are working at a finite temperature, supersymmetry alone should not be sufficient for the

cancelations.
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ε ( )2ΝO∼

ε ∼Ο(1)

Figure 3: The energy spectrum of free N = 4 SYM on S3 is quantized. Typical degeneracy for

an energy level ǫ ∼ O(1) is of order O(1). Typical degeneracy for a level of energy ǫ ∼ O(N2) is of

order eO(N2

).

a state of energy of order O(N2) from O(N2) oscillators of frequency of O(1) is clearly

exponentially large in N2.

When a theory contains n > 1 incommensurate fundamental frequencies, the free

theory spectrum at energies of order O(N2) will have level spacings of order O(N−2(n−1)).

Since the density of states are of order eO(N2), the degeneracy of a typical state is again

of order eO(N2) as in the case of one fundamental frequency. That the level spacings go

to zero as a negative power in N does not change our conclusion of previous sections

regarding the thermalization in free theory or at any finite order in perturbation theory,

since as emphasized there a small operator can only connect states whose energy differences

are of order O(N0). Therefore such small level spacings cannot be accessed dynamically.

The restriction above to a finite number of incommensurate fundamental frequencies is

not essential. The conclusion applies to any theories in which the number of fundamental

frequencies increases only as a power of the frequency. For these theories, the thermal

ensemble is dominated by states built from oscillators whose frequencies are smaller than

or of order of β−1. Thus the effective number of fundamental frequencies is finite.

Now let us turn on the interaction V (λ) (2.2) with a tiny but nonzero λ. We will focus

on the high energy sector. Given that free theory energy levels are highly degenerate, one

would like to apply degenerate perturbation, say to diagonalize V in a degenerate subspace

of energy E ≈ µN2 and of dimension eO(N2). For this purpose we need to choose a basis

in the degenerate subspace. This is a rather complicated question, due to difficulties in

imposing singlet conditions.30 However, when µ is sufficiently large we expect the singlet

condition not to play an important role.31 So to simplify our discussion we will ignore the

singlet condition below. A convenient orthonormal basis of energy eigenstates for H0 are

then monomials of various oscillators (appropriately normalized), i.e.

∏

α

N∏

i,j=1

(
M †

αij

)nαij |0〉 . (5.4)

In the basis (5.4), if the full theory is not integrable, V can be effectively treated as

30The trace relations are important for states of such energies.
31As remarked earlier, in the high temperature limit the saddle point for U (in (3.2)) approaches the

identity matrix.
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an (extremely) sparse random matrix.32 The sparseness is due to that each term in V can

connect a given monomial state to at most Nk other states, where k is an O(1) number.33

Randomness has to do with the large dimension of the subspace and to the fact that there

is no preferred ordering for the states within the same subspace. Diagonalizing V , we thus

expect, from general features of a sparse random matrix (see appendix C for a summary),

1. The degeneracy of the free theory will generically be broken.34

2. A number of states of order eO(N2) will mix under the perturbation.

3. The typical level spacing between energy levels should be proportional to the inverse

of the density of states and is thus exponentially small, of order e−O(N2). Note that

this is exponentially smaller than the level spacings in a free theory with a finite

number of incommensurate fundamental frequencies.

The story is in fact a little more intricate. We expect the degenerate perturbation

to be a good guide if the spread of energy eigenvalues after diagonalizing V in a

subspace is smaller than the spacings between nearby energy levels. The spread Γ of

eigenvalues of V can be estimated by (see appendix C)

Γ2 ∼ Γ2
a =

∑

a6=b

| 〈a|V |b〉 |2 ∼ O(N2) (5.5)

for any nonzero λ, where the sum restricts to a degenerate subspace. Note that (5.5)

only depends on that V is a single trace operator and does not depend on the specific

structure of it. That Γ ∼ O(N) implies that it is not sufficient to diagonalize V

within a degenerate subspace. It appears more appropriate to diagonalize35 it in a

subspace with energy spread of order O(N). Thus in addition, we expect that:

4. an interacting theory eigenstate |i〉 is strongly coupled to free theory states |a〉 within

an energy shell of order O(N).

This statement will be justified in the next section from a somewhat different perspec-

tive. That Γ ∼ O(N) for any nonzero λ in the ’t Hooft limit indicates a tiny λ may not

really be considered as a small perturbation after all.

Various features discussed above when turning on a small λ are clearly non-perturbative

in nature. However, it may be hard to probe them directly using Euclidean space observ-

ables like partition functions and Euclidean correlation functions. These observables probe

only average behaviors within an energy difference range of order O(T ) or larger and thus

32Here we restrict V to a single energy level. When including all energy levels V is banded and sparse.

The banded structure is due to energy conservation.
33This is because each term in V is a monomial of a few matrices.
34For Yang-Mills theories on S3, there are remaining degeneracies associated with the isometry group

SO(4) of S3. Except when one considers the sectors with very large angular momenta on S3, typical

representations of SO(4) are rather small and should not affect our general argument.
35This statement is of course only heuristic since there is no sharp criterion to decide what should be the

precise size of the subspace. However, we expect the N scaling should be robust.
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may not be sensitive to the changes in level spacings at smaller scales.36 In contrast, real-

time correlation functions are much more sensitive. For example, consider the Lehmann

spectral decomposition of G+(t), i.e.

G+(t) =
1

Z
Tr

(
e−βHO(t)O(0)

)

=
1

Z

∑

i,j

e−βEi+i(Ei−Ej)t| 〈i|O(0)|j〉 |2 (5.6)

where we have inserted complete sets of energy eigenstates |i〉 of the interacting theory.

From (5.6), it is clear that G+(t) can in principle probe any small energy differences,

provided one takes t to be large enough. This explains the breakdown of perturbation

theory in the long time limit observed in G+(t). At large N , the λ → 0 and t → ∞ limits

do not commute.

In this and the last sections we have presented two lines of largely independent argu-

ments that suggest that planar perturbation theory breaks down in the long time limit.

The first argument (last section) is based on an honest Feynman diagram calculation, which

establishes the breakdown of perturbation theory, but does not tell us directly whether the

spectral functions are continuous or not. The second argument (this section), based on

the energy spectrum, is more heuristic, but implies that the spectral functions are contin-

uous in the large N limit. There are reasons to believe that the two arguments should be

closely related. As stressed earlier, the breakdown of perturbation theory from the class of

Feynman diagrams considered in the last section only happens at a sufficiently high tem-

peratures, at which the thermal ensemble is dominated by states of energy of order O(N2)

and the energy spectrum becomes quasi-continuous.37 Nevertheless, a precise relation be-

tween the two arguments is not clear at this point, as they use very different languages

(one Feynman diagrams and the other energy levels). It would be very desirable to find a

direct connection and to have an understanding of the time scale (4.25) from the point of

view of the energy levels.

6. A statistical approach

The argument of section 4 shows that the planar perturbation theory breaks down in the

large time limit, but it does not tell us what the long time behavior is. Non-perturbative

tools are needed to understand the long time behavior of real time correlation functions in

the large N limit. Here we develop a statistical approach, taking advantage of the extremely

large density of states in the high energy sector. In this section we outline the main idea and

the results, leaving detailed calculations to various appendices. The statistical approach

36Of course if one is able to compute Euclidean observables exactly, one should be able to extract all

the interesting physics. After all, real-time observables can be obtained from Euclidean ones by analytic

continuation. It is just often the case that real-time physics is encoded in a very subtle way in Euclidean

observables.
37Applied to the theory at zero temperature or at a temperature below the deconfinement temperature,

the class of diagrams gives a convergent contribution. At such a temperature, the thermal ensemble is

dominated by states of energy of order O(N0), which are not quasi-continuous when turning on interactions.
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enables us to derive some qualitative features satisfied by the Wightman function for a

generic operator at finite temperature, including that it has a continuous spectral density

function and should decay to zero in the long time limit. The features we find here are also

shared by the Wightman function at strong coupling found from supergravity analysis.

Our starting point is the Lehmann spectral decomposition of G+(t) (5.6),

G+(t) =
1

Z

∑

i,j

e−βEi+i(Ei−Ej)tρij (6.1)

where

ρij = | 〈i|O(0)|j〉 |2 = |Oij |2 (6.2)

In momentum space

G+(ω) =
1

Z

∑

i,j

e−βEiδ(ω + Ei − Ej)ρij . (6.3)

Matrix elements Oij can in turn be expressed in terms of those of free theory using (cia

was introduced in (5.2))

Oij = 〈i|O(0)|j〉 =
∑

a,b

c∗iacjb 〈a|O|b〉 =
∑

a,b

c∗iacjbOab (6.4)

where we have inserted complete sets of free theory states and Oab = 〈a|O(0)|b〉.
Since for sufficiently high temperature, the sums in (6.3) and (6.4) are peaked at an

energy with an extremely large density of states, one should be able to obtain the qualitative

behavior of ρij and G+(ω) from statistical properties of Oab and cia. As discussed in the

last section, in the interacting theory, we expect typical level spacings scale with N like

e−O(N2). In the large N limit, Ei can be considered as taking continuous values. Note that

this by itself does not imply that G+(ω) has a continuous spectral decomposition, since

it is possible that ρij only has support for states with finite energy differences. We argue

below that ρij has nonzero support between states with any Ei − Ej ∈ (−∞,∞), which is

independent of N , and thus G+(ω) does have a continuous spectrum.

Let us first look at the statistical behavior of cia. For this purpose, consider the

following density functions

ρa(E) =
∑

i

|cia|2δ(E − Ei) (6.5)

χi(ǫ) =
∑

a

|cia|2δ(ǫ − ǫa) (6.6)

ρa(E), first introduced by Wigner [40], is also called the local spectral density function or

strength function in the literature.38 Using normalization properties of cia, one finds that

∫
dE ρa(E) = 1,

∫
dǫ χi(ǫ) = 1 (6.7)

38These density functions have been frequently used in quantum chaos literature, see e.g. [41]
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ρa(E) can be considered as the distribution of interacting theory eigenstates of energy E

coupling to a free theory state |a〉. Similarly, χi(ǫ) gives the distribution of free theory

states of energy ǫ coupling to an exact eigenstate |i〉. The mean and the variances of the

two distributions are given by

Ea =

∫
dE E ρa(E) = 〈a|H|a〉 (6.8)

σa = Γ2
a =

∫
dE (E − Ea)

2 ρa(E) =
∑

b6=a

| 〈a|V |b〉 |2 (6.9)

ǫi =

∫
dǫ ǫ χi(ǫ) = Ei − 〈i|V |i〉 (6.10)

Σi = ∆2
i =

∫
dǫ (ǫ − ǫi)

2 χ(Ei, ǫ) =
∑

j 6=i

| 〈i|V |j〉 |2 (6.11)

Ea and Γa give the center and the spread of interacting theory energy eigenstates coupling

to a free state |a〉. Similarly, ǫi and ∆i give the center and the spread of free theory

states coupling to an interacting theory energy eigenstate |i〉. Γa can be considered as a

measure of correlation among energy levels of the interacting theory (since states whose

energies differ by Γa could couple to the same free theory state and are thus correlated).

∆i characterizes the range of free theory states which are mixed by perturbation. Note

that the heuristic discussion after equation (5.5) implies that ∆i ∼ O(N), which we will

confirm below using a different method.

Individual energy eigenstates are rather hard to work with. We will consider micro-

canonical averages of (6.5) and (6.6). After all, for (6.1) and (6.3) we only need the behavior

of ρij averaged over states of similar energies. We will denote the average39 of χi(ǫ) over

interacting theory states of energy E by χE(ǫ) and similarly the average of ρa(E) over free

theory states |a〉 of similar energy ǫ by ρǫ(E). Since the averages involve a huge number

of states and the large N limit is like a thermodynamic limit in the high energy sector, we

will assume that χE(ǫ) is a smooth slow function40 of E, i.e. it depends on E only through

E/N2. Similarly ρǫ(E) is assumed to depend on ǫ only through ǫ/N2. The center and vari-

ance of χE(ǫ) and ρǫ(E) will be denoted by ǫ(E), Σ(E) = ∆2(E), E(ǫ), and σ(ǫ) = Γ2(ǫ)

respectively.41 These quantities should also be slow functions of E or ǫ as they inherit the

property from χE(ǫ) and ρǫ(E). In the appendix E we estimate these quantities and find

that

ǫ(E) = N2g(λ,E/N2)

39More explicitly, the average can be written as

χE(ǫ) =
1

Ω(E)

X

Ei∈(E−δ,E+δ)

χi(ǫ) (6.12)

where δ is small enough that Ω(E) does not vary significantly in the range (E − δ, E + δ).
40Note that a function f(E) is considered a slow function if it can be written in a form f(E) = Nag(E/N2),

where g(x) is a function independent of N .
41which can also be obtained by the average of various quantities (6.8)–(6.11) to leading order in large

N .
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Σ(E) = N2h(λ,E/N2)

E(ǫ) = N2g̃(λ, ǫ/N2)

σ(ǫ) = N2h̃(λ, ǫ/N2) (6.13)

We emphasize that the large N scalings above only depend that V is given by N

times single trace operators. Given that the underlying theory is not integrable and the

extremely large number of states, we will thus approximate cia for fixed i as a random unit

vector which centers at ǫi with a spread of order ∆i ∼ O(N).

Now we turn to the statistical properties of Oab. Our earlier discussion for V in the

free state basis (5.4) can be carried over to any operator O of dimension O(1). Thus Oab

can be considered as an sparse banded random matrix. The matrix is banded since from

energy conservation O can only connect states whose energy difference is smaller than the

dimension of O. Note that even though Oab is sparse, for each row (or column), the number

of nonzero entries grows with N as a power.

To summarize, we will assume the following statistical properties for cia and Oab:

1. For a given i, cia is a random unit vector with support inside an energy shell of width

O(N). In particular, the cia satisfy the same distribution for |a〉 of the same energy.

2. Oab is banded sparse random matrix, with the number of nonzero entries growing

with N as a power.

Now consider any two states |i〉 and |j〉, with energies Ei and Ej respectively, for which

ω = Ei − Ej ∼ O(1). One finds that ǫi − ǫj ∼ O(1) and the energy shells of the two

states overlap significantly. Given that the number of nonzero entries in a row or column

of Oab grows with N as a power and that each element of cia satisfies the same distribution,

one concludes from (6.4) that Oij should have support for any ω = Ei − Ej ∼ O(1) and

G+(ω) has a continuous spectrum for ω ∈ (−∞,+∞). Note that the fact that ∆ ∼ O(N)

is crucial for having a continuous spectrum ω ∈ (−∞,+∞). Suppose ∆ ∼ O(1), the

spectrum cannot extend to ±∞ due to energy conservation.

One can further work out more detailed properties of ρij. Leaving the detailed calcula-

tion in various appendices, we find that (after averaging ρij over states of similar energies)

ρE1E2 =
1

Ω(E)
A(ω;E) = e−S(E)A(ω;E) (6.14)

where Ω(E) and S(E) = log Ω(E) are the density of states and entropy of the interacting

theory respectively and

E =
E1 + E2

2
, ω = E1 − E2 .

Equation (6.14) is derived in appendix G along with properties of A(ω;E) stated below.

Some useful formulas used in the derivation are collected in appendix F. A(ω;E) can be

expressed in terms of an integral of χE(ǫ) and ǫ(E) (see equations (G.3) and (G.8)) and

satisfies the following properties:
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1. A(ω;E) is an even function of ω, i.e.

A(−ω;E) = A(ω;E) (6.15)

2. As ω → ∞
A(ω;E) ∝ e−

1
2
β(E)|ω|, β(E) =

∂S(E)

∂E
(6.16)

3. A(ω,E) is integrable along the real axis and can at most have integrable singularities

of the form

A(ω;E) ∝ 1

|ω − ωs|αs
, αs < 1 . (6.17)

4. AE(ω) depends on E only through E/N2, i.e. it can be written as

A(ω;E) = A(ω;µ), µ =
E

N2
(6.18)

and A is a function independent of N .

Note that property 2 implies that in the large N limit, ρE1E2 ∼ 0 for E1 − E2 ∼ Na with

a > 0.

The expression for G+(ω) in momentum space can now be obtained by plugging (6.14)

into (6.3) and using a saddle point approximation. We find that

G+(ω) =
1

Z

∫
dE e−βE eS(E)+S(E+ω)e−S(E+ω/2)A(ω,E/N2)

=
1

Z

∫
dE e−βE+S(E)

[
eS(E+ω)−S(E+ω/2)A(ω,E/N2)

]

= e
βω
2 A(ω, µβ) (6.19)

where

µβ =
Eβ

N2
,

∂S(E)

∂E

∣∣∣∣
Eβ

= β . (6.20)

Note that since in the large N limit, E can be treated as continuous and ρij has

support for any energy difference, it is appropriate to approximate the sum in (6.3) by

an integral. Also from the second line to the third line we have used that the quantity

inside the bracket depends on E slowly and performed a saddle point approximation. We

conclude this section with some remarks:

1. G+(ω) has a continuous spectrum with ω ∈ (−∞,+∞) in the large N limit (note

that ω does not scale with N).

2. Since A(ω, µ) can at most have integrable singularities of the form (6.17) on the real

axis, after a Fourier transform to coordinate space, G+(t) must go to zero in the

limit t → ∞. If A(ω;µ) is a smooth function on the real axis, then G+(t) must decay

exponentially with time.
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3. Considering the last line of (6.19) as a definition for A(ω;µ), for N = 4 SYM on S3

at strong coupling, the corresponding A(ω;µ) can be found by solving the Laplace

equation for a scalar field in an AdS black hole geometry and be expressed in terms

of boundary values of renormalizable wave functions for the scalar field [28]. In

particular, A(ω;µ) found at strong coupling satisfy all the properties (6.15)–(6.18)

(it is a smooth function on the real axis).

4. It should be possible to obtain an explicit expression for A(ω;µ) (and thus G+(ω))

using the expressions found in the appendices (e.g. equation (G.3)) if one can find

the density functions (6.5) and (6.6) for a sparse banded random matrix with varying

density of states. While those for constant density of states have been discussed in

the literature (see e.g. [41]), not much appears to be known for the non-constant

density of states [42].

7. Discussions

In this paper we first showed that in perturbation theory, real-time correlation functions

in the high temperature phase of (2.1) have a discrete spectrum and the system does

not thermalize when perturbed away from thermal equilibrium. We then argued that the

perturbative expansions for real-time correlation functions break down in the long time

limit. The breakdown of perturbation theory indicates that at large N the λ → 0 and

t → ∞ limits do not commute. The reason for the breakdown is that a wide energy range

(of order O(N)) of degenerate free theory energy eigenstates mix under the interaction.

The level spacings in the energy spectrum of O(1) in the free theory become e−O(N2). As

a result, real-time correlation functions develop a continuous spectrum for any nonzero λ.

The continuous spectrum was argued from a statistical approach developed in section 6,

where we also show that real-time correlation functions should decay to zero as t → ∞ and

the system becomes time irreversible.

We should emphasize that our arguments in this paper are qualitative in nature and

far from foolproof. For example, instead of being a random vector, cia could have some

structure (e.g. being very sparse) within the range of its spread, in which case our statistical

argument will not be valid.

It is also important to emphasize our results only apply to the high energy sector and

in the low energy sector (or in the low temperature), there is no indication of breakdown of

the planar expansion. In particular the results we describe here are not inconsistent with

that the sector near the vacuum might be integrable in the large N limit [43]. In fact the

results of [31, 39] are consistent with that the interpolation between the free theory and

strong coupling may be smooth in the low temperature phase.

Our results indicate that there is a large N “phase transition” at λ = 0, i.e. physical

observables undergo qualitative changes in the limit λ → 0. The “phase transition” we

find here is somewhat unusual, since it is not manifest in the Euclidean quantities like

the partition function. The partition function appears to be smooth in the λ → 0 limit.

The “phase transition” is in real-time correlation functions and their Fourier transforms.

– 26 –



J
H
E
P
1
2
(
2
0
0
7
)
0
2
7

Real-time correlation functions decay to zero at large time at any finite λ, while oscillatory

for λ = 0. In frequency space there is an essential singularity at λ = 0.

It would be interesting to understand whether one can continue the physics at small λ

to large λ. If there is no further large N “phase transition” in λ, we expect that the analytic

structure of various correlation functions observed at strong coupling should also be present

at small λ. Such structure include the signatures of black hole singularities [29, 28] and

the bulk-cone singularities [44].

Given that an arrow of time emerges for small λ in the large N limit, it is natural

to ask what should be the string theory interpretation of the high temperature phase for

N = 4 SYM on S3 at weak coupling, or from the microcanonical point of view, what is

the bulk interpretation for a generic state in the high energy sector.

From the parameter relations in AdS/CFT,

l2s
R2

=
1√
λ

,
GN

R8
=

1

N2
, GN = l8p ∼ g2

s l
8
s , . (7.1)

one might conclude that at weak coupling λ ≪ 1, ls ≫ R , i.e. the string length ls is

much bigger than the AdS curvature radius R. However, it seems unlikely one can give an

invariant meaning to the statement. For example, even starting with a metric with R ≪ ls,

one could perform a field redefinition of the form gµν → gµν +α′Rµν + · · ·. In terms of new

metric one then has R ∼ ls. Thus it seems to us that even for λ ≪ 1, the corresponding

bulk string theory should describe a spacetime of stringy scale, rather than sub-stringy

scale. This is also expected from the gauge theory point of view. At weak coupling the

only mass scale is the inverse radius of the sphere and there are no other lighter degrees of

freedom. Thus the string scale has to be of the same order as that of the AdS curvature

scale.

Can one interpret the bulk configuration corresponding to the high temperature phase

at weak coupling as a stringy black hole? It seems to us the answer is likely to be yes. Let

us list the properties that the corresponding bulk configuration should satisfy as expected

from gauge theory, assuming there is no further large N “phase transition” between weak

and strong couplings:

1. The bulk configuration should have an entropy and free energy of order O(1/g2
s ).

2. The object absorbs all fundamental probes (since boundary correlation functions

decay with time).

3. The bulk geometry should have a horizon (since the boundary theory has a continuous

spectrum).

4. The bulk configuration is likely to have singularities (since the signatures of the black

hole singularities in gauge theory at strong coupling cannot disappear as the coupling

is changed if there is no phase transition).

5. A generic matter distribution will collapse into such a configuration (since in the

boundary theory, a generic initial state will approach the thermal equilibrium).
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6. Results in [24, 23] indicate that the Euclidean time circle in the dual geometry for

the theory in the high temperature phase should become contractible.42

From the properties above, it seems appropriate to call it a stringy black hole.

Finally let us mention that it is possible that a stronger version of equation (6.14)

holds, i.e. for two generic states |i〉, |j〉 in the high energy sector,

ρij =
1

Ω(E)
A(ω;E)Rij , (7.2)

with

E =
Ei + Ej

2
, ω = Ei − Ej

and Rij a random matrix. Equation (7.2) is considered to be the hallmark of quantum

chaos [45, 46].43 Thus it is possible that N = 4 SYM is chaotic in the high energy sector.44

Such a chaotic behavior, if it exists, might be related to the BKL behavior near a spacelike

singularity [50].
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A. Parameter relations in AdS/CFT

N = 4 super Yang-Mills theory is a conformally invariant theory with two parameters: the

rank of gauge group N and the ’t Hooft coupling λ = g2
YMN . From the operator-state

correspondence, physical states of the theory on S3 can be obtained by acting with gauge

invariant operators on the vacuum and their energies are given by the conformal dimensions

of the corresponding operators.

It was conjectured in [5] that N = 4 SYM gives a nonperturbative description of type

IIB superstring theory in AdS5 × S5. The AdS string theory also has two parameters: the

ratio between string length ls and the curvature radius R of AdS, and the ratio between

the (10d) planck length lp and R. These ratios respectively characterize classical stringy

42Note that this alone cannot imply that the bulk geometry is a black hole since even at zero coupling

the time circle becomes contractible. As we argued earlier in this paper real-time correlation functions in

free theory do not behave like those of a black hole.
43It has also been argued in [46] that if (7.2) holds, then thermalization always occurs.
44Chaos in a classical Yang-Mills theory was discussed before in [47]. Possible pole of quantum chaos in

AdS/CFT and in black hole physics has also been discussed before in [48, 49].
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corrections and quantum gravitational corrections beyond the classical supergravity. For

small ls/R and lp/R, parameters of SYM theory and bulk string theory are related by45 [9]

α′

R2
=

1√
λ

,
GN

R8
=

1

N2
, GN = l8p ∼ g2

sα
′4 . (A.1)

The above relations indicate that the classical supergravity limit is given by the large

N and large λ limit of the SYM theory. In particular, a departure from the large N limit

of the Yang-Mills theory corresponds to turning on quantum gravitational corrections in

the AdS spacetime, while a departure from the large λ limit (with N = ∞) corresponds to

turning on classical stringy corrections.

AdS/CFT implies an isomorphism between the Hilbert space of the two theories. In

particular, any bulk configuration with asymptotic AdS5 boundary conditions can be as-

sociated with a state (pure or density matrix) of the Yang-Mills theory. The mass M of

the bulk configuration is related to the energy E in YM theory as [7, 6]

E ∼ MR . (A.2)

Depending on how E scales with N in the large N limit, states of Yang-Mills theory

are related to different objects in string theory in AdS. For example those whose E do

not scale with N (i.e. of order O(1)) should correspond to fundamental string states. An

object in AdS with a classical mass M satisfies

GNM = fixed, GN/R8 → 0 (A.3)

From (A.1) and (A.2) the corresponding state in YM theory should have E ∼ O(N2).

B. Self-energy in the real time formalism

In this appendix we first review some basic properties of real-time correlation functions.

We then prove that the spectral density functions of fundamental fields in (2.1) have a

discrete spectrum after the resummation of the self-energy diagrams à la Dyson.

B.1 Analytic properties of various real-time functions

Various real-time thermal Wightman function for an operator O are defined by

G+(t) =
1

Z
Tr

(
e−βHO(t)O(0)

)
− C

G−(t) =
1

Z
Tr

(
e−βHO(0)O(t)

)
− C

GF (t) = θ(t)G+(t) + θ(−t)G−(t),

GR(t) = iθ(t)
1

Z
Tr

(
e−βH [O(t),O(0)]

)
,

GA(t) = −iθ(−t)
1

Z
Tr

(
e−βH [O(t),O(0)]

)
(B.1)

45We omit order one numerical constants.
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where Z is the partition function and C is a constant to be specified below. It is also

convenient to introduce

G12(t) = G+(t − iβ/2) (B.2)

which can be obtained from G+(t) by an analytic continuation.

By inserting complete sets of states in (B.1), G+(t) can be written as

G+(t) =
1

Z

∑

i6=j

e−iEjteiEi(t+iβ) ρij (B.3)

where i, j sum over the physical states of the theory and ρij = | 〈i|O(0)|j〉 |2. Compar-

ing (B.3) and (B.1), C is chosen to be

C =
1

Z

∑

i

e−Eiβ ρii (B.4)

Note that C is chosen so that the Fourier transform of G+(t) does not have a “contact”

term proportional to δ(ω). Assuming the convergence of the sums is controlled by the

exponentials, it follows from (B.3) that G+(t) is analytic in t within the range −β <

Im t < 0. Similarly G−(t) is analytic for 0 < Im t < β and G12(t) for −β
2 < Imt < β

2 .

Introducing the spectral density function

ρ(ω) = (1 − e−βω)
∑

i,j

(2π)δ(ω − Ei + Ej)e
−βEjρij (B.5)

then the Fourier transforms of (B.1) can be written as

G+(ω) =
1

1 − e−βω
ρ(ω)

G12(ω) = e−
1
2
βωG+(ω) = e

1
2
βωG−(ω) =

1

2sinhβω
2

ρ(ω)

GR(ω) = −
∫ ∞

−∞

dω′

2π

ρ(ω′)

ω − ω′ + iǫ

GA(ω) = −
∫ ∞

−∞

dω′

2π

ρ(ω′)

ω − ω′ − iǫ

GF (ω) = GR(ω) + iG−(ω) (B.6)

From (B.6) we also have

ρ(ω) = −i(GR(ω) − GA(ω)) (B.7)

We also note that the Euclidean correlation function in momentum space can be ob-

tained from

GE(ωl) =

{
GR(iωl) l ≥ 0

GA(iωl) l < 0
, ωl =

2πl

β
, l ∈ Z (B.8)

Some further remarks:
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1. From (B.5)–(B.6),

ρ(−ω) = −ρ(ω), G12(−ω) = G12(ω), GR(−ω) = GA(ω) . (B.9)

2. For a theory with a discrete spectrum, from (B.5), the spectral function ρ(ω) and

G+(ω) are given by a sum of discrete delta functions supported on the real axis, while

GR(ω) is given by a discrete sum of poles along the real axis.

B.2 Self-energy in real-time formalism

In this section we consider real-time correlation functions of fundamental fields Mα in per-

turbation theory using the real-time formalism. We denote various quantities in (B.1) with

O = Mα by D
(α)
+ ,D

(α)
F etc and will suppress superscript α from now on. We prove that the

corresponding spectral density functions have a discrete spectrum after the resummation of

the self-energy diagrams à la Dyson. For simplicity, we will consider the high temperature

limit so that we can ignore the singlet projection (see (3.4)).

In the real time formalism [30] the degrees of freedom of the theory get doubled (see

also [51]). For each original field (type 1) in (2.1) one introduces an equivalent field (type

2)46 whose interaction vertices differ by a sign from the ones for fields of type 1. Vertices

therefore do not mix the two different kind of fields but propagators do and are written as

a 2× 2 matrix. For example, in frequency space the propagator for Mα (in the interacting

theory) can be written as Dab(ω), a, b = 1, 2 with each component given by

D11(ω) = DF (ω),

D22(ω) = D∗
11(−ω)

D12(ω) =
e

β
2

ω

eβω − 1
ρ(ω),

D21(ω) = D12(ω) (B.10)

Dab can be diagonalized as

Dab = U

(
Dg(ω) 0

0 D∗
g(ω)

)
U (B.11)

with

U =

(
coshγ sinhγ

sinhγ coshγ

)
,

coshγ =
e

β
2
|ω|

√
eβ|ω| − 1

,

sinhγ =
1√

eβ|ω| − 1
(B.12)

46In a path integral derivation these correspond to the fields whose time argument is t − iσ and we will

take σ = β

2
.
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and

Dg(ω) = i

∫
dω′

2π

ρ(ω′)

ω − ω′ + iǫω
=

{
−iDR(ω) ω > 0

r − iDA(ω) ω < 0
(B.13)

The last expression in (B.13) implies that when analytically continued from the posi-

tive real axis, Dg(ω) cannot have singularities in the upper half ω-plane. Similarly when

analytically continued from the negative real axis, Dg(ω) cannot have singularities in the

lower half ω-plane. Note that Dg(ω) can have a discontinuity at Im(ω) = 0. If Dg(ω) does

turn out to be analytic on the real axis, then it can have singularities only on the real axis

in the limit ǫ → 0, which in turn implies that DR,DA and DF can have singularities only

on the real axis in the limit ǫ → 0.

We will now show that Dg(ω) obtained using the Dyson equation from any finite order

computation of the self-energy is a rational function with singularities only on the real

axis. This implies that the spectral function ρ consists of a sum of finite number of delta

functions supported on the real axis.

Note that the Dyson equation can be written as

1

Dg(ω)
=

1

D
(0)
g (ω)

− iΠ̃(ω) (B.14)

where

D(0)
g =

i

ω2 − m2 + iǫ
(B.15)

is the free theory expression and Π̃(ω) can be computed from perturbation theory as

follows: (i) Compute 2×2 matrix Πab(ω) from the sum of amputated 1PI diagrams for the

propagator in real time formalism; (ii) Diagonalizing Πab(ω) using (B.12), i.e.

Πab = U

(
Π̃(ω) 0

0 Π̃∗(ω)

)
U . (B.16)

That Πab can be diagonalized using U is a consequence (B.11).

Now expanding Dg and Π̃ in power series of λ

Dg = D(0)
g + λD(1)

g + λ2D(2)
g + · · ·

Π̃ = λΠ̃(1) + λ2Π̃(2) + · · · (B.17)

from equation (B.14) we have

D(1)
g = D(0)

g (iΠ̃(1))D(0)
g , D(2)

g = D(0)
g (iΠ̃(2))D(0)

g + D(0)
g (iΠ̃(1))D(0)

g (iΠ̃(1))D(0)
g , · · ·

(B.18)

From our discussion in section 3 (applied to fundamental fields), at any finite order in

perturbation theory ρ(ω) consists of sums of terms of the form (3.7). Plugging such a ρ(ω)

into (B.13) one finds that D
(n)
g (ω) is a rational function and is analytic on the real axis

at each order in the perturbative expansion (i.e. there is no discontinuity at Im(ω) = 0).

Using (B.18) we find that Π̃(n)(ω) must also be a rational function and analytic on real axis.

This in turn implies that the resummed Dg(ω) found from (B.14) is a rational function
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and analytic on real axis. We conclude that the singularities of Dg must lie on the real

axis and there are only a finite number of them at any finite order in the computation of

the self-energy Π. From (B.13) the spectral density function must be a finite sum of delta

functions supported on the real axis.

C. Energy spectrum and eigenvectors of sparse random matrices

In this appendix we summarize features of eigenvalues and eigenvectors of a random sparse

matrix found in [52 – 54]. Consider an M ×M real symmetric matrix A whose elements Aij

for i ≥ j are independent identically distributed random variables with even probability

distribution f(Aij). Let f(x) be of the following form:

f(x) = (1 − α)δ(x) + αh(x) (C.1)

where 0 < α < 1 and h(x) is even and not delta-function like at x = 0. Let the variance of

h(x) be v2. The parameter α measures the sparsity of the matrix: for each row or column

of the matrix there will be on average αM = K elements which are different from zero. K

is called the connectivity of the matrix. When K < 1 it is possible for eigenvectors to be

localized in a subspace with dimension smaller than M . For K > 1 in the large M limit no

such localization occurs and the matrix has to be diagonalized in the full M dimensional

space.

When K ≫ 1, the density of states reduces to Wigner’s semicircular law in an expan-

sion in K−1:

ρ(E) =
1

2πΓ2

√
4Γ2 − E2

(
1 + O(K−1

)
) (C.2)

Where E is the eigenvalue value and Γ is given by:

Γ2 = Kv2
(
1 + O(K−1)

)
(C.3)

Notice that Kv2 is the average value of

Γ2
i =

∑

j 6=i

|Aij |2 (C.4)

over the rows or columns of the sparse matrix. The first correction to ρ(E) gives a change

in the edge location, however there also are nonperturbative tails to the distribution which

for E ≫ Γ assume the form:

ρ(E) ∼
(

E2

eK

)−E2

(C.5)

Their effect is to make the spectrum unbounded.

Denote by T the orthogonal change of basis matrix which brings A to diagonal form

for K ≫ 1. T has a random uniform distribution over the group of orthogonal M × M

matrices. Therefore the eigenvectors of A are a random orthonormal basis of the total

space which means that apart from correlations47 which are negligible in the large M limit

their elements are independently distributed gaussian random variables with mean 0 and

variance 1
M . In particular the eigenvectors are completely delocalized. Therefore for large

K the situation is similar to that for the Gaussian Orthogonal Ensemble (GOE).

47which are due to normalization conditions.
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D. Single anharmonic oscillator48

It is clear that the argument presented in section 4 applies to the real time correlation func-

tions of a single anharmonic oscillator at finite temperature (with changes of combinatorial

factors)

S =

∫
dt

(
1

2
ẋ2 − 1

2
x2 − 1

4!
λx4

)
. (D.1)

For example one can conclude that the perturbation theory for

D+(t) = 〈x(t)x(0)〉β (D.2)

should diverge at a time scale (4.25) for T ≫ ω0 (we set ω0 = 1 in (D.1)). Here we give an

alternative derivation of this. Inserting complete sets of states in (D.2) we find that

D+(t) = Z−1
∑

n,m

| 〈n|x|m〉 |2e−βEn−it(Em−En) (D.3)

where Z =
∑

n e−βEn and |n〉 are interacting theory eigenstates. If we are interested only

in contributions of the form (λt)n we get:

D+(t) = Z−1
0

∑

n,m

| 〈n|x|m〉0 |2e−βE
(0)
n −it(E

(0)
m −E

(0)
n )−itλ(E

(1)
m −E

(1)
n ) + · · · (D.4)

where quantities with index 0 are computed in the free theory and λE(1) are the energy

shifts at first order in perturbation theory. Equation (D.4) can be evaluated as

D+(t) =
1

2
Z−1

0

∞∑

n=0

(n + 1)[e−β(n+ 1
2
)−it(1+ λ

8
(n+1)) + e−β(n+ 3

2
)+it(1+ λ

8
(n+1))] + · · · (D.5)

which can be summed to give

D+(t) =
(eβ − 1)eβ−it(1−λ

8
)

2(eβ+ itλ
8 − 1)2

+
(eβ − 1)eit(1−λ

8
)

2(eβ− itλ
8 − 1)2

+ · · · (D.6)

In (D.6) there are double poles at

t = ±i
8β

λ
+ k

16π

λ
, k ∈ Z . (D.7)

If one resums the diagrams discussed in section 4, one would then get simple poles and

the positions of the poles are further away from the real axis than those of (D.6) indicating

that there are some positive contributions not captured by the class of Feynman diagrams.

The reason for the behavior (D.5)–(D.7) can be attributed to the fact that the first

order energy shift behaves as

λ(E
(1)
n+1 − E(1)

n ) ∝ λn . (D.8)

48This section is motivated from a discussion with Steve Shenker.
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Thus when n is sufficiently large i.e. n ∼ 1
λ , perturbation theory breaks down due

to level crossing. Also note that the divergence of perturbation theory at t ∼ 1
λT has

nothing to do with the standard argument of the breakdown of perturbation theory by

taking λ → −λ. Indeed the behavior here is due to a single class of diagrams not to the n!

growth of the number of diagrams.

We emphasize that while from the Feynman diagram point of view the discussion for

anharmonic oscillators is almost identical to that for a matrix quantum mechanics (ex-

cept that for matrix quantum mechanics one restricts to planar diagrams), the underlying

physics for the breakdown of perturbation theory appears to be very different:

1. In the example of a single anharmonic oscillator, perturbation theory is asymptotic,

i.e. the n-th order expansion contains n! independent diagrams. In contrast, in the

planar expansion of a matrix quantum mechanics, the number of Feynmann diagrams

grows only like a power in n. The class of planar diagrams we identified gives rise

to O(n!) contribution (in frequency space) at the n-th order. In the anharmonic

oscillator example, given that the perturbative expansion is already divergent, one

cannot really draw any clear conclusion from this class of diagrams. For instance,

its contribution could be overwhelmed by those from n! other diagrams. In contrast,

in the case of matrix quantum mechanics, the contribution from the particular class

of diagrams makes an otherwise convergent perturbative expansion divergent. Given

that the nature of perturbation theory is very different between the single anharmonic

oscillator and the planar matrix quantum mechanics, one should be very careful

in drawing any conclusion when comparing them. In particular, the fact that the

anharmonic oscillator has a discrete spectrum does not imply that in the matrix

quantum mechanics case, the divergence of the subclass of diagrams and hence the

breakdown of perturbation theory are not related to a possible underlying quasi-

continuous spectrum.

2. As indicated earlier in this appendix for a single anharmonic oscillator, the divergent

behavior of the class of Feynman diagrams considered in section 4 should have to do

with with level mixing for states of energy O(1/λ). Applying the same technique to

a matrix quantum mechanics, one again expects to relate the divergent behavior of

the class of Feynman diagrams to the mixing of energy levels which dominate the

thermal ensemble (i.e. with energy O(N2)). More explicitly, let us write (D.4) for

the matrix case as

D+(t) = Z−1
0

∑

n

e−βE
(0)
n

∑

m

| 〈n|M |m〉0 |2e−it(E
(0)
m −E

(0)
n )−itλ(E

(1)
m −E

(1)
n ) + · · · (D.9)

As we discussed in the main text, the sum over m in the above equation will involve

an exponentially large number of states with free theory energies ranging over of order

O(N). A naive estimate of E
(1)
m −E

(1)
n also gives order O(N). Here unfortunately the

story appears to be rather complicated and it appears it is not possible to extract a

divergent time scale 1/λT from (D.9).
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In summary, the Feynman diagram argument demonstrates the breakdown of pertur-

bation theory, but does not tell us why or how it breaks down. It is certainly possible that

completely different mixing behaviors in the energy levels may be reflected similarly by

Feynman diagrams. In the anharmonic oscillator example discrete levels mix, while in the

matrix quantum mechanics a quasi-continuous spectrum mixes. One must be very careful

in extrapolating the results for an anharmonic oscillator to a matrix quantum mechanics.

E. Estimate of various quantities

We now estimate (6.8)–(6.11) after averaging them over states of similar energies. We will

be interested in how these quantities scale with N in the large N limit. An important

property that we will assume below for these averaged quantities is that they are slow-

varying functions of ǫ or E. In the large N limit, we can then estimate them using

the corresponding thermal averages, which can in turn be expressed in terms of various

correlation functions at finite temperature. For example, the thermal average of Σi is

Σ̂(β) =
1

Z

∑

i

e−βEiΣi =
1

Z

∫
dE e−βEΩ(E)Σ(E) (E.1)

where Σ(E) is the microcanonical average and Ω(E) = eS(E) the density of states. Since

Σ(E) is a slow-varying function of E, we can perform a saddle point approximation of the

last expression, yielding

Σ(E) ≈ Σ̂(βE)
(
1 + O(1/N2)

)
(E.2)

with βE determined by ∂S(E)
∂E = βE . Using the last equality of (6.11) we can write Σ̂(β) as

Σ̂(β) =
1

Z

∑

i,j,i6=j

e−βEi | 〈i|V |j〉 |2

= 〈V (0)V (0)〉β (E.3)

where 〈V (0)V (0)〉β denotes the connected Wightman function as defined by (B.3).

From the standard large N scaling argument (E.3) is of order O(N2) (recall that we

include a factor of N in the definition of V ). Thus unless (E.3) is zero at leading order we

conclude that Σ(E) can be written in a form

Σ(E) = N2h(λ,E/N2) (E.4)

where h(λ, µ) is a function independent of N . An exactly parallel argument can be applied

to σ(ǫ) in which case (E.3) is replaced by expectation values in free theory and thus we

find that

σ(ǫ) = N2h̃(λ, ǫ/N2) (E.5)

for some function h̃.

As another example, let us look at the thermal average of (6.10),

1

Z

∑

i

e−βEiǫi =
1

Z

∫
dE e−βEΩ(E) ǫ(E) ≈ ǫ(Eβ) (E.6)
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Using the last equality of (6.10), the left hand side of (E.6) can in turn be written as

Eβ − 〈V 〉β (E.7)

where 〈V 〉β is the thermal one-point function of V in the interacting theory and scales with

N as O(N2). Thus we can write

ǫ(E) = N2g(λ,E/N2) (E.8)

for some function h. An exactly parallel argument yields

E(ǫ) = N2g̃(λ, ǫ/N2) . (E.9)

To summarize, we find that the averaged values of Γ(ǫ) and ∆(E) are both of order

O(N) in the ‘t Hooft limit for any nonzero λ. Thus in the large N limit, both the correlation

length between interacting theory energy levels and the energy range that the free theory

states are mixed under perturbation go to infinity.

F. Some useful relations

In this appendix we derive some important relations which will be used in appendix G

to derive the matrix elements of an operator O between generic states in the high energy

sector.

F.1 Density of states

The conservation of states implies that the density of states Ω(E) of the full theory and

Ω0(ǫ) of the free theory should be related by

Ω(E) = Ω0(ǫ(E))
dǫ(E)

dE
(F.1)

which implies

1

Ω(E)

dΩ(E)

dE
=

dǫ(E)

dE

1

Ω0(ǫ(E))

dΩ0

dǫ

∣∣∣∣
ǫ(E)

+

d2ǫ(E)
dE2

dǫ(E)
dE

In the large N limit the second term in the above equation should be of order O(1/N2).

Thus we find that

β(E) = β0(ǫ(E))
dǫ(E)

dE
(F.2)

with

β(E) =
1

Ω(E)

dΩ(E)

dE
, β0(ǫ) =

1

Ω0(ǫ)

dΩ0

dǫ
. (F.3)

We also expect that

ǫ(E(ǫ)) ≈ ǫ (F.4)

Note that all the above relations are valid only to leading order in N .
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F.2 Properties of χE(ǫ) and ρǫ(E)

Consider the microcanonical average of (6.5) and (6.6), which we denote as ρǫ(E) and

χE(ǫ) respectively. From (6.5) and (6.6) one should have

ρǫ(E) =
Ω(E)

Ω0(ǫ)
χE(ǫ) . (F.5)

From (6.7) we should also have ∫
dǫ χE(ǫ) = 1 (F.6)

and ∫
dE ρǫ(E) =

1

Ω0(ǫ)

∫
dE Ω(E) χE(ǫ) = 1 . (F.7)

Given that

ǫ(E) =

∫
dǫ ǫ χE(ǫ), Σ(E) = ∆2(E) =

∫
dǫ (ǫ − ǫ(E))2χE(ǫ) (F.8)

we can write χE(ǫ) as

χE(ǫ) = fE(ǫ − ǫ(E)) (F.9)

with fE a function which has a spread of ∆(E) ∼ O(N). Since we expect fE(ω) to fall off

quickly to zero in the large N limit outside the range (−1
2∆(E), 1

2∆(E)), equations (F.6)

and (F.7) lead to ∫ ∞

−∞
dω fE(ω) = 1 (F.10)

and ∫ ∞

−∞
dE

Ω(E)

Ω0(ǫ)
fE(ǫ − ǫ(E)) = 1 (F.11)

Changing the integration variable of (F.11) to ǫ′ = ǫ(E) and using (F.4), we find that
∫

dǫ′
Ω0(ǫ

′)

Ω0(ǫ)
fE(ǫ′)(ǫ − ǫ′) =

∫ ∞

−∞
dω fE(ǫ)(ω)

Ω0(ǫ − ω)

Ω0(ǫ)
= 1 (F.12)

where in the second expression we have replaced fE(ǫ′) by fE(ǫ). This is because, as a

function of ǫ − ǫ′, the spread of f is of order O(N), while E(ǫ′) ≈ E(ǫ) + O( ǫ′−ǫ
N2 ) ≈ E(ǫ).

The second expression of (F.12) can now be written as
∫ ∞

−∞
dωfE(ω)e−β0(ǫ(E))ω = 1 (F.13)

Equations (F.10) and (F.13) can be written in a more symmetric manner as
∫ ∞

−∞
dω e

1
2
β(E)ω gE(ω) =

∫ ∞

−∞
dω e−

1
2
β(E)ω gE(ω) = 1 (F.14)

where we have introduced a function

gE(ω) = e−
1
2
β(E)ω dǫ(E)

dE
fE

(
dǫ(E)

dE
ω

)
. (F.15)

Equations (F.14) imply that gE(ω) should fall off faster than e−
1
2
β(E)|ω| as ω → ±∞.
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F.3 A relation between matrix elements and correlation functions in free theory

In this subsection we derive in free theory a relation between the matrix elements of an op-

erator O between states in the high energy sector and correlation functions. For simplicity

we consider theories with a single fundamental frequency ω0, like N = 4 SYM or (2.3).

The Lehmann spectral decomposition for frequency space Wightman function G
(0)
+ (ω)

of some operator O in free theory can be written as

G
(0)
+ (ω) =

1

Z0

∑

a,b

e−βǫaρab δ(ω − ǫb + ǫa) (F.16)

where ρab = | 〈a|O(0)|b〉 |2. Due to energy conservation, O can only connect levels whose

energy differences lie between −∆ω0 and ∆ω0, where ∆ is the dimension of O, i.e. ρab can

only be non-vanishing for |ǫa − ǫb| ≤ ∆ω0. We can thus rewrite (F.16) as

G
(0)
+ (ω) =

1

Z0

∆∑

k=−∆

Gkδ(ω − kω0) (F.17)

with

Gk =
1

Z0

∑

a

e−βǫa
∑

ǫb=ǫa+kω0

ρab

=
1

Z0

∑

a

e−βǫaρk(a) (F.18)

where
∑

ǫb=ǫ denotes that one sums over |b〉 whose energy is given by ǫb = ǫ. Note here

we have assumed that the free theory energy levels are equally spaced as in N = 4 SYM

theory on S3. We also introduced

ρk(a) =
∑

ǫb=ǫa+kω0

ρab (F.19)

We now separate the sum a in (F.18) in terms of energies and degeneracies, i.e.

∑

a

=
∑

ǫ

∑

ǫa=ǫ

We thus find that

Gk =
1

Z0

∑

ǫ

N (ǫ)e−βǫρk(ǫ) (F.20)

where we have introduced the micro-canonical average of ρk(b)for energy ǫ

ρk(ǫ) =
1

N (ǫ)

∑

a∈ǫ

ρk(a) =
1

N (ǫ)

∑

ǫa=ǫ

∑

ǫb=ǫ+kω0

ρab . (F.21)

We expect that the microcanonical average ρk(ǫ) should be a slow varying function

of ǫ, i.e. it can be written in a form Nαf(ǫ/N2) for some constant α. In the large N
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limit since N (ǫ)e−βǫ is sharply peaked at ǫβ specified by, one can perform a saddle point

approximation in (F.20) to get

Gk = ρk(ǫβ) + · · · (F.22)

From (F.16) we thus find that

G+(ω) =
∑

k

ρk(ǫβ)δ(ω − kω0) (F.23)

In the large N limit since the connected part of G+(ω) scales with N as O(N0), thus

we find from (F.23) that

ρk(ǫβ) ∼ O(N0) . (F.24)

G. Derivation of matrix elements

In this appendix we give a derivation of (6.14). The main object of interests to us is

ρij =
∑

a,b

|cia|2|cjb|2ρab

=
∑

a

|cia|2
∑

k

∑

ǫb=ǫa+kω0

|cjb|2ρab (G.1)

Due to the sparse and random nature of ρab, one cannot naively approximate the sums

over a and b in by integrals. Instead one must be careful with the discreteness nature of

the sum. Note that

∑

ǫb=ǫa+kω0

|cjb|2ρab ≈ cj(ǫa + k)
∑

ǫb=ǫa+kω0

ρab = cj(ǫa + k)ρk(a)

which can be justified as follows. Inside a given energy shell, ρab can be treated as a random

sparse matrix. Thus one can treat the summand as a random sampling of |cjb|2. Since the

number of sampling points goes to infinity (as a power in N) in the large N limit, we can

approximate |cjb|2 by its average value of the energy shell. We now have

ρij =
∑

k

∑

a

|cia|2cj(ǫa + k)ρk(a)

=
∑

k

∑

ǫ

cj(ǫ + k)
∑

ǫa=ǫ

|cia|2ρk(a)

=
∑

k

∑

ǫ

cj(ǫ + k)N (ǫ)ci(ǫ)ρk(ǫ) (G.2)

In the second line above we separated the sum over all states a into the sum over the

energy and the sum over states in each energy shell. In the third line we replaced the sum

in an energy shell by its average values. The replacement is all right since |cia|2 and ρk(a)

are completely independent variables, so the average of their product should factorize.
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Now given that all quantities in the last line of (G.2) are averaged quantities, we

approximate the sum over ǫ by an integral. Averaging i, j over states of the same energy

and using (6.6), we find

ρE1E2 =
∑

k

∫
dǫ

Ω0(ǫ + k)
χE2(ǫ + k)χE1(ǫ) ρk(ǫ)

=
∑

k

∫
dǫ

Ω0(ǫ + k)
fE2(ǫ + k − ǫ2)fE1(ǫ − ǫ1) ρk(ǫ)

=
∑

k

∫
dp

Ω0(ǫ12 + p + k)
fE2(p + k +

1

2
∆12)fE1(p − 1

2
∆12) ρk(p + ǫ12) (G.3)

with

ǫ1,2 = ǫ(E1,2), ǫ12 =
1

2
(ǫ(E1) + ǫ(E2)) = ǫ(E), ∆12 = ǫ(E1) − ǫ(E2) =

dǫ(E)

dE

∣∣∣∣
E

ω

where

E =
E1 + E2

2
, ω = E1 − E2

Equation (G.3) can be further simplified as

ρE1E2 =
1

Ω(E)

∑

k

G12(k)

∫ ∞

−∞
dp gE

(
p + k′ +

1

2
ω

)
gE

(
p − 1

2
ω

)

=
1

Ω(E)
A(ω;E) (G.4)

with

G12(k) = e−
1
2
β0(ǫ12)kρk(ǫ12), k′ =

1
dǫ(E)
dE

k (G.5)

and gE(ω) was defined in (F.15). Note that from equation (F.23), G12 are essentially

the Fourier components of free theory correlation functions. A(ω;E) should be a smooth

function of ω since the integral in (G.4) appears to be well defined for all ω. It is easy to

check that

A(−ω;E) = A(ω;E) (G.6)

since G12(k) = G12(−k). Further as ω → ∞, we find that

A(ω;E) ∝ e−
1
2
β(E)|ω| . (G.7)

Now let us examine possible singularities of A(ω,E) on the real axis. We start with

the definition (F.9) of fE. Since χE(ǫ) is the average of (6.6) over states of similar energies,

fE(ω) must be a real positive function of ω ∈ R. Then the function gE(ω) introduced

in (F.15) should also be real and positive as ǫ(E) is a monotonous function of E. The

positivity and normalization conditions (F.14) imply that gE(ω) can at most have integrable

singularities of the form49

gE(ω) ≈ Ki

|ω − ωi|αi
, ω → ωi, αi < 1 (G.8)

49Such integrable singularities can only arise if cia have accumulation points in the large N limit. While

it appears unlikely that this can happen, we do not have a rigorous proof at the moment.

– 41 –



J
H
E
P
1
2
(
2
0
0
7
)
0
2
7

Note that the closer αi is to one the smaller is Ki from the normalization requirement.

Now let us look at the definition (G.4) of A(ω;E),

A(ω;E) =
∑

k

G12(k)s(ω + k) (G.9)

where

s(ω) =

∫ ∞

−∞
dx gE

(
x +

1

2
ω

)
gE

(
x − 1

2
ω

)
. (G.10)

Note that the finite sum over k in (G.9) cannot introduce singularities in ω therefore we

focus on s(ω). As gE(ω) falls off faster than e−
1
2
β(E)|ω| as ω → ±∞, the integral in (G.10)

is convergent for x → ±∞. Thus we only need to worry about possible divergences arising

from the middle of the integration range. Integrating (G.10) we find that
∫ ∞

−∞
dωs(ω) =

∫ ∞

−∞
dxgE(x)

∫ ∞

−∞
dygE(y) (G.11)

which is finite by (F.14) . Therefore the only singularities allowed for s(ω) are of

integrable kind K
|ω−ωs|α

with α < 1. We can find the locations of ωs in terms of (integrable)

singularities of gE(ω) as follows. Since gE(x− 1
2ω) and gE(x + 1

2ω) are both integrable the

only possible divergences of (G.10) are at values of ω for which the integrable singularities

of two function sit on top of each other. This happens for ω = ωi −ωj where the ωi are the

locations of the singularities for gE(ω). For ω = ωi−ωj + ǫ with ǫ small the integral (G.10)

near x ≈ 1
2(ωi +ωj) can be written as KiKj

∫ δ
−δ dy 1

|y− 1
2
ǫ|αj |y+ 1

2
ǫ|αi

where δ is some multiple

of ǫ. By rescaling we see that it behaves as ǫ1−αi−αj . Therefore the integral s(ω) can at

most have a singularity of the form
KiKj

|ω−ωi+ωj |α
with α = αi + αj − 1 < 1.

Thus we conclude that on the real axis A(ω;E) can have at most integrable singularities

of the form

A(ω;E) ∝ 1

|ω − ωs|αs
, αs < 1 . (G.12)
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